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The growing resistance to current first-line antimalarial drugs repre-
sents a major health challenge. To facilitate the discovery of new
antimalarials, we have implemented an efficient and robust high-
throughput cell-based screen (1,536-well format) based on prolifer-
ation of Plasmodium falciparum (Pf) in erythrocytes. From a screen of
�1.7 million compounds, we identified a diverse collection of �6,000
small molecules comprised of >530 distinct scaffolds, all of which
show potent antimalarial activity (<1.25 �M). Most known antima-
larials were identified in this screen, thus validating our approach. In
addition, we identified many novel chemical scaffolds, which likely
act through both known and novel pathways. We further show that
in some cases the mechanism of action of these antimalarials can be
determined by in silico compound activity profiling. This method uses
large datasets from unrelated cellular and biochemical screens and
the guilt-by-association principle to predict which cellular pathway
and/or protein target is being inhibited by select compounds. In
addition, the screening method has the potential to provide the
malaria community with many new starting points for the develop-
ment of biological probes and drugs with novel antiparasitic
activities.

antifolates � cheminformatics � high-throughput screening �
Plasmodium falciparum

P arasite resistance has rendered some of the least expensive,
traditional antimalarial drugs ineffective. Moreover, be-

cause the likelihood is high that resistance will emerge to the
current first-line drugs, artemisinin-based combination ther-
apies, there is currently great interest in finding the next
generation of antimalarial drugs. Insofar as malaria affects
many countries with poor public health resources, attributes of
an ideal treatment for malaria are different from those for
diseases of industrialized countries. An ideal antimalarial
should be inexpensive to synthesize, have good oral bioavail-
ability, have short treatment regimens, be well tolerated by the
patient, and be stable at room temperature. One approach to
the discovery of such antimalarial agents involves the identi-
fication of new therapeutic targets that then form the basis for
chemical screens to identify small molecules that modulate the
target’s activity in vivo. Although such an approach has been
highly productive in general, it has not worked well for many
infectious agents. In many cases, these target-based screens
reveal small molecules with potent activity against an enzyme
but that are still unable to clear an infection, either because the
target is not really essential to the microbe’s viability in the
host or because the compound is unable to inhibit the target
in the in vivo environment (1).

An alternative and more traditional approach is to perform
cell-based screens directly against living organisms in which a small
molecule is tested in an unbiased fashion against all targets required

for viability simultaneously. The disadvantage is that once a com-
pound with potent cellular activity is discovered, lead optimization
is hindered without knowing which protein target the compound
inhibits. Various strategies for target deconvolution have been
developed, including selection of resistant mutants, biochemical
affinity-based methods, and cDNA complementation. Nonetheless,
this remains a challenging and time-consuming task. However, with
the automation and miniaturization of cellular screening systems,
we can now obtain unprecedented amounts of data for a single
small molecule across a diverse collection of cellular screens.
Because compounds with similar activities against a pathway or a
target are likely to have similar profiles across screens, we hypoth-
esized that a comprehensive evaluation of these large-scale datasets
might provide insights into a compound’s possible mechanism of
action (MOA) through an in silico guilt-by-association approach.
Here, we report the application of such an approach to a large
cell-based screen for compounds with antimalarial activity. From a
fluorescence-based screen (2) of 1.7 million compounds, we iden-
tified a subset of �17,000 compounds with potent antimalarial
activity in a cellular assay (�1.25 �M) that were then evaluated
across 131 unrelated cellular and enzymatic screens. In silico
compound activity profiling has revealed the cellular pathway
and/or protein target for a number of selected compounds.

Results
Development of a Malaria High-Throughput Screening Method. Be-
cause most published assays for antimalarial activity include an
unacceptable use of radioactivity (3–5), expensive reagents, exces-
sive liquid transfer steps, or time-dependent steps (2, 6–10), all of
which are not compatible with automated 1,536-well high-
throughput screens (HTS), most large chemical libraries have not
yet been screened for antimalarial activity. We thus set out to adapt
a method for use with the small assay volumes (�8 �l) of 1,536-well
HTS. Our assay is based on a published method (2, 7) in which an
increase in parasite nuclei in red blood cell culture is measured after
staining with SYBR green I, a dye that fluoresces when bound to
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nucleic acids. Because erythrocytes do not contain nuclei, increases
in DNA and RNA are directly attributable to parasite proliferation.
Optimization of various parameters, including top and bottom
microtiter plate reading, drug-parasite incubation times, lysis meth-
ods, and staining time, enabled signal-to-noise ratios of up to 10 and
produced excellent correlations between parasitemia (Pf strain
3D7) and fluorescence signal (Fig. 1A). The mean Z factor for
plates in the validation screens was 0.63 (SD � 0.37, median �
0.78). Even though albumax was used in the screening media and
resulted in small protein shifts, we were able to readily determine
the EC50 values of mefloquine (9.5 � 0.8 nM), pyrimethamine
(7.2 � 1.4 nM), artemisinin (9.0 � 0. 7 nM), and primaquine (548 �
200 nM) (Fig. 1B), which were in good agreement with literature
values.

To conduct the full library screen (1.7 million compounds) the
fully integrated and automated screening system (www.gnfsystems.
com; described in ref. 11) was used. Because of the sheer numbers
of plates involved and the limited number of incubators, libraries
were divided into sets of �300,000 compounds and analyzed over
a 12-week period. A typical microtiter plate read from the screen
is shown in Fig. 1B. Using a criterion of a 50% inhibition in parasite
growth at 1.25 �M relative to control plates, we identified �17,000

primary hits. Most metrics indicated that the data were of high
quality. First, the library fortuitously contained redundant com-
pounds, and in most cases they were rediscovered (e.g., five of the
six wells containing pyrimethamine were considered ‘‘hits,’’ six of
the eight wells containing chloroquine were considered hits, and
five of the five containing aminodiaquine were considered hits),
suggesting a low false negative rate for the screen. Second, we
searched each scaffold against PubChem (http://pubchem.ncbi.
nlm.nih.gov) and the World Drug Index (http://scientific.
thomsonreuters.com/products/wdi) and retrieved annotations for
394 compounds (12). This set included most of the known antima-
larial drugs along with closely related molecules. As previously
observed (13), we were able to confirm that the antihistamine
astemizole shows antimalarial activity. Hydroxyfenone, which is
closely related to the arrhythmia drug propafenone, which had
previously been identified as having antimalarial activity, was found
(14), as was perhexiline (14). A comprehensive search of the whole
chemical library confirmed that our hit list captured most com-
pounds with known antimalarial activities with a P value of 10�10.
Based on automated evaluation of the MeSH heading (Medical
Subject Headings; see www.nlm.nih.gov/mesh), there were also 23
misses, including those with activities of �1 �M [e.g., phenylnorsta-
tine, which is a substructure of a complete peptidomimetic protease
inhibitor, may not have the required potency at 1.25 �M (15);
pepstatin has an EC50 of between 3 and 30 �M (16); betulinic acid
has an EC50 of �4 �M (17); bredinin has an EC50 of 50 �M (18);
5�-methylthioadenosine has an EC50 of 80 �M (19)] and those that
need to be metabolized (e.g., proguanil) or compounds that were
not in the library (e.g., atovaquone). Impressively, only five known
antimalarials remained either inconclusive or false negatives. Of the
17,000 primary hits, 6,549 compounds were available that were
interesting and potent enough to function as possible drug discov-
ery leads, and these were tested in dose–response format. Of these,
5,973 showed EC50 values of �1.25 �M and 648 showed EC50 values
of �100 nM. When chemical powders were obtained and retested,
�80% were reconfirmed.

Clustering by Chemical Scaffold. To assess the utility of the screen in
terms of novel structural motifs, confirmed HTS hits were first
clustered based on the chemical similarity (20), resulting in the
identification of �530 different classes (cluster size �3) with a
similarity metric of 0.85 or higher. The distribution of different
scaffolds is shown in Fig. 2. Although 5% of the structures are
similar to known drugs, the majority of the remaining scaffolds were
not previously classified as having antimalarial activity. Therefore,

Fig. 1. Validation of the antimalarial HTS assay. (A) Test results from a
titration experiment. A 1:2 dilution of a parasite culture of Pf strain 3D7
starting out at a 5% parasitemia and 2.5% hematocrit was performed with
screening media. The trend line was fitted with an R2 of 0.997 from a 0.078%
to 5% parasitemia (logarithmically scaled in both dimensions). (B) Fluores-
cence intensity across an entire assay plate. Columns 45 and 46 were treated
with 12.5 �M mefloquine, and columns 47 and 48 were treated with 0.125%
DMS0. (C) 3D7 dose–response plot with antimalarial control compounds. The
EC50 values of artemisinin, mefloquine, pyrimethamine, and primaquine are
9.0 nM, 9.5 nM, 7.2 nM, and 548 nM, respectively.

Fig. 2. Chemotype and MOA distributions of validated compounds. Che-
motypes distinct from any known drugs were found in 95% of the validated
hits. Known chemotypes are further categorized based on their MOA assign-
ments from MeSH.
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our HTS approach significantly expanded the chemical space of
potential new-generation antimalarials. Among some of the classes
we discovered were a variety of drug-like scaffolds containing
piperzines, pyrazoles, imidazoles, pyazines, and other heterocyclic
scaffolds all obeying the Lipinski’s rule of five (21). None of these
compounds contained known metal-binding motifs (such as quino-
liones) or chemically reactive functionalities (such as Michael
acceptors, chloromethyl ketones, or hydrazones), making them
highly attractive leads.

Clustering by Historical Activities. To identify compounds that might
be broadly toxic, we collected data for each of the 8,457 primary hits
across 131 historical, mostly cell-based screens, which had been
carried out with the same basic collection of compounds (com-
prised of different assay formats, readouts, therapeutic areas, or
signal qualities). Compounds that are active in a large range of
cellular assays are likely to be toxic or nonselective for parasites, and
many such compounds were readily identified by our profile
analysis. Among the 72 compounds that were hits in at least 40
cellular screens were tonzonium bromide (a surfactant), valinomy-
cin (a pore-forming antibiotic), acetarsol emetine (inhibits polypep-
tide chain elongation), sangivamycin (an apoptosis-inducing
nucleoside analog), anisomycin (an antibiotic), malachite-green-
oxalate, and fascaplysin (a tyrosine kinase inhibitor). However, the
majority (7,375 of those primary hits with data) of compounds were
found in �15 other assays and in some cases compounds were only
hits in the malaria assay. The group included chloroquine, amin-
odiaquine, quinine, quinacrine, artemisinin, benflumetol (lumefan-
trine), and some more obscure compounds with known antimalarial
activity, including ciproquinate, bialamicol, and several used to
treat parasitic infections (e.g., trichomonacid, acranil, and propa-
midine isethionate).

Using ‘‘Guilt by Association’’ to Determine the Mechanism of Action of
Small Molecules. The advantage of a cell-based screen is that it
represents an unbiased picture of the known and unknown cellular
pathways that can be modulated by small molecules. The chief
disadvantage of cellular screening is that the protein target of a
small molecule discovered in the process remains unknown. Lead
optimization steps (including optimization of affinity, selectivity,
and pharmacological profile) are likely to be more efficient if a
protein target is known. Thus, the determination of a compound’s
exact protein target or MOA is desirable even though the process
can be a time-consuming one. Therefore, the availability of rapid,
low cost ways to predict what pathways or targets an uncharacter-
ized cellular hit might affect in the cell would be quite attractive.
Because this process is analogous to predicting how uncharacterized
proteins might function in the cell by using global gene expression
profiling and ‘‘guilt-by-association’’ analysis, we sought to test
whether we could use the same analytical approach, which has been
applied successfully to gene expression analysis, to our chemical
screening data. We thus applied a semi-supervised clustering
algorithm (22) to the historical screening data. We first began with
all compounds annotated under the same MOA (62 MeSH groups
in total) and created a ‘‘metaprofile’’ for this group using data from
the 131 historical screens. We then ranked the profiles of all of the
uncharacterized compounds according to their similarity to the
metaprofile and descended through this list of compounds until the
cluster with the best enrichment score was identified (see Methods).
Permutation testing was also performed to determine whether the
enrichment would be obtained by chance. Thus, we were able to
confirm that in 31 cases (of the 62 different MeSH groups associ-
ated with hits from the screen), compounds with similar annota-
tions showed much more similar activity profiles than what one
would expect in a collection of 8,457 small molecules (Table 1).

One of the more striking of the 31 MeSH groups contained 30
compounds, 14 of which had MeSH annotations. Of these 14, 11
had MeSH annotations indicating that they prevent protein syn-

thesis. The probability of this degree of segregation occurring by
chance is 10�25 (Fig. 3A). The group included emetine, mucono-
mycin A, anisomycin (inhibits peptidyl transferase of the 80S
ribosome system), cephaelin, echinomycin A (binds DNA and
inhibits RNA synthesis), cycloheximide (inhibits protein synthesis
by binding to RNA), and puromycin, all of which are active in
various assays measuring cellular proliferation. One of the three
false positives in the group was verapamil, a compound that is
thought to block calcium channels but that also may block protein
synthesis by inhibiting the uptake of thymidine, uridine, and leucine
(23). The other false positives (muconomycin A and sangivamycin)
probably do inhibit protein synthesis (24, 25) but do not have MeSH
headings indicating as much. Most of these compounds would not
be useful as antimalarials but could be useful as chemical probes to
query protein function, for finding new protein targets for antima-
larials that might be more selective for parasites, or as leads that
could be engineered to be specific for the parasite. Interestingly,
although these compounds shared similar activity profiles, their
chemical structures were very different from one another (similar-
ity score of 0.33, P � 0.65; see Methods). This is somewhat expected,
however, because small molecules that target the same cellular
process may bind different protein targets and have different
structures, but produce similar chemical phenotypes.

Table 1. Results of clustering analysis

Annotation category log10P Ppermute

In current
MeSH

Cluster
size

MeSH82005493:Folic Acid Antagonists �38.78 0.00 15 26

MeSH82000563:Amebicides �29.46 0.00 11 16

MeSH82000969:Antinematodal Agents �28.84 0.00 12 29

MeSH82000970:Antineoplastic Agents �28.71 0.00 18 122

MeSH82018712:Analgesics, Non-Narcotic �27.92 0.00 12 30

MeSH82000871:Anthelmintics

MeSH82009125:Muscle Relaxants,

Central MeSH82018727:Muscarinic

Antagonists

�26.10 0.00 12 45

MeSH82011500:Protein Synthesis Inhibitors �25.36 0.00 11 30

MeSH82000891:Anti-Infective Agents, Local �25.20 0.00 8 8

MeSH82000317:Adrenergic

alpha-Antagonists

�23.72 0.00 12 60

MeSH82000981:Antiprotozoal Agents �23.38 0.00 8 8

MeSH82000962:Antimalarials �20.80 0.00 21 213

MeSH82000923:Anticestodal Agents

MeSH82005369:Filaricides

�20.74 0.00 6 6

MeSH82000889:Anti-Arrhythmia Agents �20.41 0.00 20 457

MeSH82000894:Anti-Inflammatory Agents,

Non-Steroidal

MeSH82018501:Antirheumatic Agents

�18.82 0.00 6 6

MeSH82005456:Fluorescent Dyes �18.82 0.00 6 6

MeSH82000935:Antifungal Agents �16.81 0.00 5 5

MeSH82000900:Anti-Bacterial Agents �15.09 0.00 7 63

MeSH82000893:Anti-Inflammatory Agents �14.78 0.00 6 32

MeSH82007476:Ionophores

MeSH82003049:Coccidiostats

�14.35 0.00 4 4

MeSH82002614:Chelating Agents �14.35 0.00 4 4

MeSH82000972:Antineoplastic Agents,

Phytogenic

�13.95 0.00 5 16

MeSH82000903:Antibiotics, Antineoplastic �13.65 0.00 5 18

MeSH82050257:Tubulin Modulators �13.18 0.00 4 6

MeSH82004791:Enzyme Inhibitors �12.21 0.00 5 5

MeSH82014344:Trypanocidal Agents �11.55 0.03 4 9

MeSH82000959:Antihypertensive Agents �10.96 0.03 5 57

Compounds with 62 different MeSH headings were identified in the pri-
mary screen. For each MeSH heading group, we tested to see whether activity
profiles across 131 screens were more similar than would be expected by
chance. The log10P is an estimate of the probability that compounds with a
given MeSH heading (number shown in ‘‘In current MeSH’’) would be found
together in a group given by ‘‘Cluster size’’ by chance in an analysis of 5,973
compounds. Ppermute gives the P value obtained by permutation testing. Only
statistically significant clusters are shown.
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One other notable group identified by the above MOA enrich-
ment analysis consisted of 26 compounds, including several copies
of the known antifolate malarial drug pyrimethamine (Fig. 3C and
Table 2). This group also included the other antifolate drug
cycloguanil, the cancer drug edatrexate, and 11 uncharacterized
compounds. All of the characterized compounds in this group are
known to act by directly inhibiting dihydrofolate reductase
(DHFR), thus blocking folate biosynthesis, an essential intermedi-
ate in DNA metabolism (reviewed in ref. 26). The probability of
finding 15 of the 16 known antifolates in the same cluster of 26 can
be estimated at 1 in 10�39. In addition to being active in the parasite
proliferation assay, all 26 also had activity in several other assays
that involved a cell line whose proliferation was made dependent on
the activation of various tyrosine kinases such as the janus-related
kinase 2, the janus-related kinase 3, Brc-Abl, or mesenchymal
epithelial transition factor (c-met). Although it is feasible that the
compounds could be hitting different targets within the folate
biosynthesis pathway, most-common-substructure analysis (27) re-
vealed that all of the compounds shared a distinct common phar-
macophore, a diaminopyrimidine moiety (Fig. 3C), suggesting that
all likely interact with the target of pyrimethamine and edatrexate,
DHFR. Interestingly, many compounds with a diaminopyrimidine
group have unrelated profiles or have no activity against parasites,
indicating that this group is necessary but not sufficient for forming
a complex with DHFR.

Testing Mechanism-of-Action Predictions by Using Docking Studies
and Drug-Resistant Parasites. To test whether the uncharacterized
compounds in the folate cluster, predicted by the clustering algo-
rithm, might be interacting with P. falciparum DHFR, we tested
them against Pf strain W2. This parasite isolate carries a triple point
mutation (S108N/N51I/C59R) in DHFR that renders parasites 225
times more resistant to pyrimethamine (reviewed in ref. 28). With
one exception, all compounds showed substantially less activity
against W2 (Table 2). Because strain W2 is not isogenic with 3D7,
is also resistant to quinoline-type antibiotics, and carries an ampli-
fication in the multidrug resistant transporter, these differences in
sensitivity could be due to other mutations elsewhere in the
genome. However, 59.4% of the antimalarial hits in this study were
equipotent against strain W2, and thus these differences are un-
likely to be due to other differences between the W2 and 3D7
genomes or other artifacts of screening. As further confirmation, we
docked them to the active site of the P. falciparum DHFR structure

(29) using AutoDock (30). As can be seen in Fig. 4, all compounds
fit well into the active site of DHFR. Interestingly, the 10-
deazaaminopterin that was relatively active against W2 was not able
to achieve this activity as a consequence of increased interactions
with the cysteine in the W2 active site at position 10. Rather, it is
the innate homology of the inhibitor to the native ligand, dihydro-
folate, and the inherent flexibility derived from this design. Notably,
this is also crucial to the success of the potent antimalarial
WR99210, which also overcomes W2 active-site mutations (31). As
further proof, searches of patent databases indicated that the
compounds had previously been reported as potentially acting
against DHFR (32). We thus conclude that in some cases com-
pounds with similar activities across cellular screens have similar
MOA and that this cheminformatic approach allowed the target of
the 11 uncharacterized compounds to be determined by using guilt
by association. These data also highlight the portion of the molecule
that likely has critical interactions with the protein target and can
thus accelerate structure–activity relationship studies.

Discussion
One of the challenges of modern drug discovery lies in determining
the mechanism of action of active compounds identified in cell-
based assays. Most biochemical approaches such as affinity chro-
matography, a method in which derivatized versions of the active
compound are synthesized and used to purify proteins that bind the
compound (33), typically require a high affinity between the target
and lead. Furthermore, for some microbes, such as malaria para-
sites, large quantities of protein for biochemistry may be difficult to
acquire. Genetic approaches have also been used to find the target
of small molecules, but these are also relatively serial in nature,
sometimes requiring long periods to select for resistance in the
laboratory or the field (10). Unless one has candidate genes in mind,
finding the gene bearing the mutation can be more even challeng-
ing, and one must remember that a gene involved in resistance to
a compound may not be a compound’s target. However, the
availability of genome sequences and large collections of expression
data have altered the way that we determine what genes are doing
for the cell, and new methods have arisen that can be used to
discover patterns in immense biological datasets. It seems likely that
large datasets will prove just as useful in chemical biology. Here, we
show that when enough high-throughput screening data are avail-
able, compounds may segregate based on their mechanism of
action. This in silico compound activity profiling approach can also

Fig. 3. Several statistically significant MOA and SAR clusters. (A) Cluster of 30 compounds containing 11 annotated protein synthesis inhibitors. (B) Cluster
containing 26 compounds, among which 15 are antimalarials known to be folic acid antagonists. (C) SAR-driven cluster containing 44 staurosporine-like
structures sharing the same profile.
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substitute for initial structure–activity relationship studies because
both potency and selectivity are revealed simultaneously, further
accelerating the process of drug development.

MOA prediction of uncharacterized compounds has traditionally
depended on their structural similarity to known drugs; i.e., SAR.
Our clustering analysis can also work if it starts with compounds
sharing the same scaffold instead of MOA. For example, stauro-
sporine is a compound that is active against a wide variety of protein
kinases. Of the 8,457 hits, structure-clustering analysis showed 48
compounds similar to staurosporine (similarity �0.85, P � 0.001),
and 44 of these were contained in an activity profile group of 55
compounds (Fig. 3B). The probability of this occurring by chance
is �10�100. However, in our MOA-driven antifolate prediction, the
diaminopyrimidine group only shares a low similarity score of 0.30
(P � 0.75) and 0.48 (P � 0.11) with pyrimethamine and edatrexate,
respectively. Their MOA cannot be predicted if the scaffold-
similarity approach is taken.

One chief limitation of MOA-driven clustering analysis is the lack
of chemical annotation for compounds that can be used in guilt-
by-association methods; PubChem or MeSH annotations were only
available for �5% of compounds in the screen. The fast developing

National Institutes of Health Roadmap initiatives should improve
the percentage over the time. In contrast, the large amount of
information in data sources such as patent collections has yet to be

Fig. 4. Predicted mode of binding of the uncharacterized inhibitors to wild-type
PfDHFR. Blind docking studies between the diaminopyrimidine class of inhibitors to the
crystal structure of PfDHFR revealed a clustering of hits to the active site that shared the
same general mode of binding. (A) For comparison, top hits for each of the 11
uncharacterized diaminopyrimidine class of inhibitors superimposed. (B) Top docking
result for compound 5 (yellow) shown superimposed to the crystallized complex
between NADPH (gray), the antifolate inhibitor WR99210 (red), and PfDHFR (green).

Table 2. Primary hits that share a similar activity profile
to known antifolates across 131 screens

ID Structure (common name)
3D7,
�M

W2,
�M Ref.

1 (four times) Cycloguanil

N

N
NCl

H2N

NH2

0.011 �1.25

2 (three times) Edatrexate

NNH2N

N

NH2
N

O

HN
O

OH

O OH

0.027 0.111

3
N

S
O

O

NH2N

N

NH2
0.205 �1.25 32

4
N
NS

O

O

NH2N

N

NH2

0.071 �1.25 32

5 (five times) Pyrimethamine

NH2N

N

NH2
Cl

0.066 �1.25

6
N

S
O

O

NH2N

N

NH2
0.106 0.715 32

7

H2N

N

NH2

N

S
O

O

N

0.020 �1.25 32

8

H2N

N

NH2

N

S
O

O

N

S 0.116 �1.25 32

9

H2N

N

NH2

N

S
O

O

N

OH

0.012 �1.25 32

Table 2. (continued)

ID Structure (common name)
3D7,
�M

W2,
�M Ref.

10 10-Deazaaminopterin

NNH2N

N

NH2
N

O

HN
O

OH

O OH

0.066 0.032

11

NN

NH2N

NH2
0.011 0.742 36

12

H2N

N

NH2

N

S
O

O N

0.060 �1.25 32

13

H2N

N

NH2

N

S
O

O N

0.098 �1.25 32

14

H2N

N

NH2

N

S
O

O

N

O 0.047 �1.25 32

All, except one (not shown), were reconfirmed in subsequent testing. Com-
pounds 1, 2, and 5 were present and were registered as hits multiple times.
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more effectively exploited. Another limitation in using historical
screening data and guilt-by-association approaches is that many of
the compounds that were discovered as active in the antimalarial
screen have little activity in the other screens that we have run with
our compound set. From a drug discovery point of view, these may
be the most interesting because they are likely to be more selective.
For malaria the goal is thus to discover more high-throughput assays
that will eventually allow different compounds that currently have
similar profiles to segregate away from one another. Such assays
may include tests for the ability to kill gametocytes (artemisinin,
primaquine), tests for the ability to inhibit liver stage development
(primaquine, atovaquone), pathway-based assays, or enzymatic
assays such as those that may be performed against targets involved
in fatty acid biosynthesis or mitochondrial function (atovaquone).
Similar approaches have been described in cancer, where a set of
compounds can be run against a panel of 60 different cell line (34).
The inclusion of screening data from a variety of different drug-
resistant strains with different phenotypic sensitivities to com-
pounds may also be revealing (such as the 3D7 and W2 screens
performed here). Alternatively, testing each compound against a
panel of isogenic parasite strains each of which overexpresses a
particular protein could be informative in much the same way it has
been informative in yeast (35). Automated high-content imaging of
parasites that have been treated with different inhibitors may also
provide clues about how the compounds are acting in the cell.
Finally, the establishment of an infrastructure to share this large set
of active compounds with the greater malaria research community
may provide a method for further annotating the MOA of these
compounds, as well as for accelerating antimalarial drug develop-
ment.

Materials and Methods
Experimental Protocols. Approximately 1.7 million compounds were screened
in 1,536-well format for antimalarial activity [see supporting information (SI)

Materials and Methods]. Using Genomics Institute of the Novartis Research
Foundation (GNF) on-line screening equipment, 3 �l of screening medium
[RPMI (without phenol red, with L-glutamine), 4.16 mg/ml albumax, 0.013
mg/ml hypoxanthine, 1.73 mg/ml glucose, 0.18% NaHCO3, 0.031M Hepes, 2.60
mM NaOH, 0.043 mg/ml gentamicin] was dispensed into 1,536-well, black,
clear-bottom plates (Greiner). With a PinTool (GNF Systems), 10 nl of com-
pound in DMSO was transferred into the assay plates along with control
compounds (1.25 �M in 0.125% DMSO). Next, 5 �l of the parasite suspension
in screening medium (see above) was dispensed into the assay plates such that
the final parasitemia was 0.3% and the final hematocrit was 2.5%. Meflo-
quine (12.5 �M) and DMSO (0.125%) were used within the assay plates to serve
as background and baseline controls, respectively. The assay plates were
transferred to off-line incubators that contained airtight incubation units. The
units were gassed daily with 93% nitrogen, 4% carbon dioxide, and 3%
oxygen during the 72-h incubation at 37°C. Two microliters of detection
reagent consisting of 10� SYBR Green I (Invitrogen; supplied in 10,000�
concentration) in lysis buffer (20 mM Tris�HCl, 5 mM EDTA, 0.16% Saponin
wt/vol, 1.6% Triton X vol/vol) was dispensed into the assay plates. The assay
plates were left at room temperature for 24 h and read off-line by using
several Acquest GT multimode readers (Molecular Devices).

Data Analysis. An activity matrix of 8,457 compounds across 131 biological
assays was constructed by using the GNF in-house HTS database (complete
details are available in SI Materials and Methods). Compounds were
clustered into scaffold families based on their structural similarities, and
their mode-of-action annotations were retrieved from the MeSH database
whenever possible through an in-house compound annotation pipeline.
Each scaffold family and each MeSH term served as a piece of independent
knowledge that guided the ontology-based pattern identification (OPI)
algorithm to group the compounds into statistically significant clusters
that share unusually similar activity profiles. A total of 530 scaffold families
and 62 MeSH categories were studied. A cluster of 26 compounds enriched
in antifolates was identified; docking simulations were carried out to study
the binding conformations of predicted compound members of that MOA.
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